Organizing Plan Libraries in Subsumption
Hierarchies: Specificity Based Plan Selection

Vibhu Mittal! Cecile Paris Ramesh Patil William Swartout!

A D - A248 7 1 1 Information Sciences Institute Y
MDHEIMNOIMEY Oniversity of Southern California DTIiC

4676 Admiralty Way ELECTS o
Marina del Rey, CA 90292 ' v
USA, APRL 4 1592 §

{mittal,paris,ramesh,swartout }@ISI.EDU
Phone: +1 (310) 822-1511
Fax: +1 (310) 823-6714

Abstract:

As the number of plans in a plan library grows, the importance of selecting
a plan efficiently also increases. Previous planners have not addressed this
issue in great detail, because they typically had only tens of plans -- as
domain models grow more and more specialized, and planners incorporate
new macro-operators through learning, plan libraries can become more
than a magnitude greater in size. This paper addresses the issue of
organizing plan libraries in specificity based hierarchies. In particular,
we look at how a plan library can be represented in a frame-based KiL-
ONE style system. Such systems offer powerful mechanisms to handle
dynamically changing knowledge bases. In particular, the subsumption
classifier mechanism in such systems, offers a simple and efficient means
of indexing new plans and goals into the hierarchy. We illustrate the
feasibility of this approach by using examples from an implemented system,
and describe some of the other advantages that accrue from the use of such
a framework for organizing large plan libraries.

| DISTHILTTION £

T ' ;() 5’% Uistripuivas L. k

The authors are listed in alphabetical order and gratefully acknowledge the support of NASA-Ames
grant NCC 2-520 and DARPA contract DABT63-91-C-0025.
tAlso affiliated with the Department of Computer Science, University of Southern California, Los

' . " £“ -06%95
e e | RN

@Q

P

P e

1 Introduction

Planning systems may vary widely in their control strategy or their
application domain, but they have all had a plan library, a resource
which stores and organizes the plans for use by the planner. As domain
models grow more specialized, and as planners incorporate new macro-
operators through learning, plan libraries can become very larger. In
such situations, it becomes very important to organize the plans in a
structure designed for efficient indexing and access. This issue was not
raised by previous planners such as NOAH [7], TWEAK [1] and STRIPS [2],
because their plan libraries were relatively small, and consisted of
operators that were relatively independent of each other.

In addition to the question of efficient access, another criterion
that the organization of the library must consider is the expression of
relationships between the different plans. This is essential, because, as
we will show in the paper, the knowledge about the inter-relationships
between the plans is critical for plan selection, when a number of plans
are applicable, as well as for goal reformulation, when there are no
plans that match the goal exactly. Schemes such as a hash-table look-
up mechanism, therefore, are not suitable, because, while they offer a
fast access and indexing of the plans, they do not offer any means of
annotating inter-relationships among them.

In this paper, we describe one approach to the organization and
representation of plan libraries: our system uses the mechanisms in
a frame-based, inheritance network knowledge representation (KR)
system to both store and index plans in a type specific hierarchy. The
use of such a system to implement plan retrieval and selection requires
that the plan-capabilities, and the goals, be expressed in terms in the
KR language. We describe in the following sections, how specificity
based plan selection can be implemented within a KR framework, and
the issues that arise in mapping plans and goals to expressions that
can be used by such a KR system during classification. We illustrate
our approach with examples and conclude with a discussion on its
strengths and weaknesses.

AcCrers..a Yor

Yaal
1"v 7 Taw
‘nvve@ s gived
Just2S oatt

Distrivetien/

2 A Specificity Based Hierarchical Organi-_Avtiisvility co

ﬁvtll nﬁdio;

zation of the Plans Dist | sucetal

A\

In our framework,! we view planning as a means of generating ac-
tion sequences for a wide range of problem solving tasks, including
diagnosis, critiquing and scheduling. Plans in our system resemble
macro-operators in some planning systems, such as STRIPS, NOAH and \
TWEAK -- they are ordered sequences of actions, which can be appliedin . 2l)
certain contexts, if all the given pre-conditions are satisfied. However, NG
our approach is not limited to specific types of plans or planning sys-

tems. We are addressing the issues that arise when there are a large

number of plans, many of them being variants for achieving similar

goals in differing situations. For instance, there can be a number of

plans to diagnose a decserver: one to diagnose any decserver, indicated

by the following specification:

(DIAGNOSE (OBJECT (D is (A DECSERVER))))

another to diagnose decservers which are connected to source-computers,
indicated by:

(DIAGNOSE (OBJECT (D is
(A DECSERVER' (CONNECTED-TO SOURCE-COMPUTER)))))

and yet another to diagnose a decserver connected to another source-
computer directly through a link (i.e., not through a lanbridge):

(DIAGNOSE (OBJECT (D is
(A DECSERVER (LINE-CONNECTED SOURCE-COMPUTER)))))

Given a goal to diagnose a decserver, it is important for the planner
be able to select the most appropriate plan in the situation. Large
plan libraries containing numerous plans like the ones mentioned
above, have not been very common in the past, but with more and
more systems integrating learning with planning, the situation is fast
changing. The need for organizing plan libraries becomes evident when
viewed in this context.

IThe Explainable Expert Systems (EES) Framework [6, 8.

2

There are two major requirements in the organization of plan
libraries:

1. The ability to efficiently index plans, given a particular goal, and
retrieve the most specific plan for that goal, taking into account
all the information available, and

2. The ability to express plan inter-relationships.

The ability to index plans efficiently further depends upon two
factors:

1. What the system considers during the match: most planners,
such as PRODIGY [?] for instance, match plans based only on the
EFFECT specification, i.e., the action and its arguments. These
arguments are typically either variables or constants, and not
domain dependent concept restrictions. This operation results
in a set of possible plans. This set of plans is then examined,
serially, to see if the constraints are satisfied. A plan is then
selected from the set remaining after inapplicable ones have been
removed. This is typically done on the basis of control knowledge,
using selection strategies, such as “pick the most specific,” “pick
the most general,”, etc.

2. How the plans are organized in a plan library: previous planners
have adopted various approaches to organizing plans, based on
their perspective of how important efficient plan matching is to the
system’s performance. Thus, for instance, since the major source
of computational complexity in planning has typically been in the
sequencing, a large number of planners have encoded their plan
libraries in a flat, serial fashion, thus forcing the examination
of each and every plan for every given goal. Earlier versions of
PRODIGY, for instance, did this. Other approaches have also been
used: a hash table, mapping goals to applicable plans (recent
versions of PRODIGY); the use of discrimination nets, as in NOAH;
etc.

Few planners have addressed these two issues of organizing li-
braries based on both plan matching and representing inter-relationships.
Yet, these issues are important if a good organization for large plan

3

libraries is to be devised. Each of these issues interact and influence
one another -- for instance, since plan selection is based on matching
goals with EFFECTs and the CONSTRAINTS, the matching process could
be made more efficient by combining the two sources of information
and using it all to find applicable plans. However, there planners
have not attempted to integrate the two. The information being used
in the match process affects the organization of the plans in the li-
brary; however, the need to be able to represent plan relationships,
also constrains the organization scheme, and therefore, the type of
indexing schemes possible. For instance, hash tables, while offering
fast access, would not be able to satisfy the requirement of repre-
senting plan inter-relationships. Surprisingly, plan inter-relationships
have rarely been considered during plan organization, inspite of some
significant benefits: consider for instance the three plans mentioned
above: it can be seen that the second plan and the third plan are
both specializations of the first one, because they are both plans that
diagnose decservers in specialized situations. The third plan is also a
specialization of the second one, if the knowledge base specifies that
the relation LINE-CONNECTED is a specialization of the more general
relation CONNECTED-TO. Should the last plan mentioned above fail to
achieve a goal, the next one to be attempted should be the second one,
rather than the first one. However, if the relationships between plan
1, plan 2 and plan 3 are not represented, the planner would not be
able to select plan 2 over plan 1 (It would consider them both equally
applicable). Thus, the organization should reflect some of the control
knowledge that is usually specified in a non-transparent, procedural
fashion in planners.

One possible method of organizing the plans is in the form of a
hierarchy: given a specificity ordering between plans, it is an easy
matter to organize them in a hierarchy. Well designed hierarchies offer
a reasonably fast and efficient means of indexing plans; should a goal
fail to match any plans exactly, it is still possible to find plans that
are more specific and more general than the one required. These plans
can be then used to reformulate the goal in terms of the plans that the
system does possess.

However, hierarchies are not very easy to modify, especially if new
terms or relationships are defined in terms of one another, or if new
plans are added or deleted. Thus, the use of static discrimination

4

networks, such as those used in NOAH, to index the plan library, is
not satisfactory, though it does offer some advantages over the other
approaches that have been used.

In the following section, we show how the use of a inheritance-based,
frame classification system such as LOOM [4, 5] allows our system to
build dynamic hierarchies based on type specificity. Such a hierarchizal
organization provides fast and efficient indexing into the plan library;
the classification capability coupled with the underlying knowledge
representation, allows the dynamic modification of the terms and their
relationships in the knowledge base.

3 Organizing Plan Libraries as Concept Hi-
erarchies

From the preceding discussion, it is clear that there is a need to
organize large plan libraries into specificity based hierarchies. As
we mentioned earlier, plans in our system resemble macro-operators
in other systems. They have a number of components, of which the
relevant ones are:2

o the :CAPABILITY slot, which indicates the sort of goals the plan is
capable of achieving;’

e the :PRECONDITIONS slot, specifying the features that must be
true in the state of the world for that plan to be instantiated and
executed (preconditions in our system do not cause other goals to
be posted).

e and a :RESULTS slot, which specifies the type of the result of
plan execution -- for instance, a plan to determine whether a
component had power or not, would have BOOLEAN as its result
specification; a plan to find all instances of source-computers
that were connected to a given decserver, would have (SET-OF
COMPUTER) as its result specification.

2There are other components, such as the :METHOD or the body of the plan, which
we will not elaborate upon in this paper.

(DEFINE-PLAN Diagnose-Component
:CAPABILITY (diagnose (object (C is (a component))))
:RESULTS (a potential-problem)
¢tMETHOD (
[... code for the plan ...]
)

Figure 1: A sample plan to diagnose a component.

An example of a plan in our domain of diagnosing decservers is
shown in Figure 1.

It has no preconditions and its result is a potential-problen. It
should be mentioned here that our plan language allows the expression
of some types of constraints as part of the :CAPABILITY specification, in
addition to the ones in the :PRECONDITIONS slot.

To be able to represent plans such as these in a frame based KR
system, the system must be able to map the :CAPABILITY, :PRECONDI-
TIONS and the :RESULTS slots appropriately into expressions in the KR
language. This mapping must be designed in such a way that spe-
cializations of a plan result in corresponding KR expressions that are
specializations of the expression representing the more general plan.
In other words, the plan lattice should be mapped into an isomorphic
concept lattice. There are many possible transformations to ensure this
mapping. We shall now describe briefly the transformations for plan
capabilities and goals in our system.

3.1 Mapping Plan Capabilities to Concept Expres-
sions

The mapping between plan capabilities and concept expressions can
be easily derived by representing the semantics of the plan’s capa-
bility description. This is especiaily true in our system, where the
plan language allows the expression of various constraints as part
of the :CAPABILITY specification. Consider for instance, the following

plan :CAPABILITY specification:? (DIAGNOSE (OBJECT (D is (A
DECSERVER)))) In this, the simplest case, the capability description
specifies that the plan is capable of diagnosing D, a decserver. The KR
language used in our system is LOOM [4, 5], one of the KL-ONE family of
languages. One possible definition for a corresponding LOOM concept
of the above capability description is:

(DEFCONCEPT DIAGNOSE-DECSERVER
:IS (:AND DIAGNOSE (:THE OBJECT DECSERVER)))

The expression above defines a new concept DIAGNOSE-DECSERVER.
Diagnose-Decserveris an action of type DIAGNOSE. It therefore inherits
all the roles and restrictions defined on DIAGNOSE. It also has one
relation restriction defined on it. This restriction is defined on the
relation OBJECT: there can be only one relation named OBJECT on an
instance (this is the keyword :the), and the range of this relation (the
domain is diagnose-decserver)is restricted to the type DECSERVER.

Consider now the following capability description:

(DIAGNOSE (OBJECT (D is (A DECSERVER (CONNECTED-TO SOURCE-COMPUTER)))))

In this case, the capability description specifies that the plan is capable
of diagnosing decservers which are connected to source-computers.
This is a specialized version of the plan discussed previously -- the one
to diagnose decservers in general -- and if the resulting LOOM
concept is to form an isomorphic lattice structure, it is essential that
the LOOM transformation be such that the corresponding LOOM
concept for this plan is subsumed by the concept definition for the
first one. What is needed in this case, is a concept, also of type
DIAGNOSE (since this is also a diagnosing action), but the OBJECT
under diagnosis is another concept: a complex concept, as yet unnamed,
which represents a decserver connected-to 8 source-computer.
This can be represented in LOOM as follows:

(DEFCONCEPT DIAGNOSE-DECSERVER-CONNECTED-TO-SOURCE-COMPUTER
:IS (:AND DIAGNOSE
(:THE OBJECT (:AND DECSERVER
(:SOME CONNECTED-TO SOURCE-COMPUTER)))))

3In the more traditional operator representations, the capability could
be represented as:(:CAPABILITY (DIAGNOSE ?D)) (:CONSTRAINTS (TYPE-P
?D DECSERVER)).

The LOOM definition states that the concept is of type DIAGNOSE,
whose only OBJECT role has its range restricted to a concept: a dec-
server, one of whose connected-t oroles?, is filled by a source-computer.
The concept defined above is a specialization of the previous one, since

the range restriction is a specialization of decserver.

These examples illustrate the basic principles behind the mappings
from plan capabilities to LOOM concept expressions.

3.2 Mapping Goals to Concept Expressions

In order to do the match a goal to the plans, goals must also be
transformed into concept expressions that can be used in indexing
the plan hierarchy. This can be done in a fashion similar to that
for plan capabilities. There is however, an additional complication in
transforming goals to LOOM expressions, because goals have instances
as well as concepts in them. For instance, if the system were to be
given a goal of the form (DIAGNOSE (OBJECT DECSERVER-123)),the
desired behavior of the system would be to find and return the most
specific plan applicable for the instance DECSERVER-123. The most
specific plan can be found efficiently if the plans are organized in a type
specific higrarchy, by converting the goal into a LOOM form and using
that to index into the plan hierarchy.

KL-ONE style classifiers require concept expressions for classification
-- they cannot classify instances -- and therefore it becomes essential
that the mixed-mode expression that the goal would normally be
converted to (following the transformation sequence described for plan
capabilities) be coerced into a form suitable for use by the classifier.
There are two ways of coercing the mixed-mode concept into a form
that can be used by LOOM: one, is to go ‘down’, and convert the concept
expression to a ‘pure’ instance, or to go ‘up’ and transform it into a
pure concept expression. A discussion on the differences between these
two approaches is beyond the scope of this paper. In this section,
we describe how goals can be mapped into ‘pure’ concept expressions,
which can be used to index the plan hierarchy for applicable plans.

It is important to keep in mind that during this transformation

4This is specified by the keyword : some

of a goal to a LOOM expression, and then to a LOOM concept
expression, no usable information is dropped in the mapping pro-
cess. This concept of usable information can be better explained
with an example: Consider, for instance, the goal of diagnosing the
instance DECSERVER-123 that were posted above. If all that were
known about DECSERVER-123 was of type decserver, the system
should have retrieved the DIAGNOSE-DECSERVER plan; on the other
hand, if it was known that DECSERVER-123 was related to an in-
stance of source-computer through the relation CONNECTED-TO, then
the plan DIAGNOSE-DECSERVER-CONNECTED-TO-SOURCE-COMPUTER
should have been the most specific one returned. Note that the retrieval
of the second plan is still based on the same syntactic goal being posted;
the extra knowledge about the connection of DECSERVER-B is available
and retrieved from the knowledge base, but is not explicitly stated in
the goal. Plan selection strategies based on static discrimination nets,
that did not take into account (for instance) all sub-types of the relation
CONNECTED-TO, would not be able to correctly index plans that involved
those specializations. This can easily occur, if for instance, the knowl-
edge base is modified even slightly after the discrimination network is
constructed. In a system such as ours, new concept descriptions are
created by various resources; in any learning system, the possibility of
new terms being defined due to learning cannot be ruled out. It is thus
important for any system that the ‘discrimination network’ be able to
take into account the dynamic nature of the knowledge base and the
underlying concept hierarchy, in terms of which the plans are likely to
be indexed. -

This brings us back to the original issue, that of coercing the mixed-
mode expressions into forms that the classifier is capable of handling.
One possible solution is to transform the goals not into concepts with
instances as role fillers, but rather to find the most specific concept
type (MST) of each instance in the goal, and use these types to construct
the corresponding LOOM expression. This approach has one very
important implication -- classifiers in KL-ONE style languages do not
classify instances because the definitional component of information
cannot be circumscribed -- by finding the MST of an instance, the
reasoning is now being restricted to only consider named expressions --
concepts that exist (either because they were user-defined, or defined
by the system as a result of a conjunctive expression appearing in a

plan capability), in the classifier hierarchy. Without this restriction, it
would not have been possible for the classifier to work; in essence, the
system requests the classifier to reason using only ooncepts it already
knows about.

Consider for instance, the example given below:

(tell (adder instance-1))
(retrieve ?x (instance--type instance-1 ?x)) ==> (|C|ADDER)

In the first case, retrieving the instance--type of instance-1
returns the concept ADDER.

(tell (multiplier instance-2))
(tell (connected-to instance-1 instance-2))

A relationship between instance-1 and instance-2 through the
relation connected-tois asserted. The MST that the system would re-
turn in response to the query that previously returned (|{C{ ADDER),
depends upon any other concept compositions that the system knows
about. If there were no concepts that had an adder connected to a
multiplier in the domain model, the system would return an (|C|
ADDER), as in the case above. However, if there were to be a con-
cept in the system that related an adder and a multiplier via a
connected-to relation, the query would return that concept, even if
it were an mtemally-deﬁned concept. In our case, the system returned
the concept Concept_243, where Concept 243 was defined to be:
(DEFCONCEPT CONCEPT_ 243

:IS (ADDER (:SOME CONNECTED-TO MULTIPLIER))

:ATTRIBUTES (:SYSTEM-DEFINED))
CONCEPT.243 was defined bty the system automatically, when the

following plan capability was defined in LOOM:
(<ACTION> ... (<role-name> (A is (A (ADDER (CONNECTED-TO MULTIPLIER))):

This is because, the way this is transformed into LOOM resulted in
the following expression:
(DEFCONCEPT ADCG-592
:IS (:AND <ACTION> (:THE <ROLE-NAME>
(:and ADDER (:SOME CONNECTED-TO MULTIPLIER)))))

10

When LOOM is given this definition, it is forced to create an internally
named concept (in our case, concept 243). Thus, the underlying
concept hierarchy in terms of which the plans can be indexed, contains
not only the terms that the user defines, but also system-defined terms
such as the one above, which arise due to the complex plan definitions.
This enables the system to retrieve the correct plan from the plan
hierarchy by taking into consideration all incidental information about
the instance that it can take advantage of. Thus, the plans known
to the system automatically determine the information about the goal
instance that will be used in indexing the plans, in addition to the user
defined type, which is what a plan selection mechanism based on static
discrimination networks would be limited to.

A brief description of our plan matching algorithm is shown in
Figure 2.

4 Advantages of this Approach

There are many advantages of using an approach which combines the
power and flexibility of frame-based classifier system with a planning
system to organize and index plan libraries in an efficient manner. As
systems grow and add more specialized plans and refine their domain
model, the problem of indexing plan libraries is likely to become larger.
Previous approaches to this problem have not considered the use of
such a powerful mechanism, because they were either implemented as
isolated stand-alone planning systems, or the number of plan operators
was small enough for this issue to not be raised. There are a number of
advantages in the use of such a framework. Some of these are:

1. An efficient organization of plans in a hierarchy, leading to fast
efficient access. The hierarchy closely integrated with the domain
model, and is maintained by the classifier dynamically. Changes
in the domain model cause both the domain relationships as
well as the plan hierarchy to be updated accordingly. In contrast,
static discrimination networks, based on one version of the domain
model, can be crippled by the use of a slightly different domain
model that invalidate some of the previous relationships. Changes
in the plan capability statements, as well as the constraints, are

11

For each plan:
1. Parse each plan and collect and combine allits : preconditionswith its : capability specification.

2. Map this new :capability specification to a comesponding LOOM expression (these translation
routines will depend upon the grammar of the plan language and the KR language).

3. Generate a LOOM cotcept whose definition consists of the above expression and is subsumed by a
concept that stands for plans.

4. Classify the new plan concept in the plan hierarchy.

For each goal:
1. Parse the posted goal and find all the instances in the goal.
2. For each instance in the goal posted, find the most specific concept type that subsumes it
3. Replace the actual instances in the posted goal with their types.

4. Transform this modiified goal (containing only concepts) to a LOOM expression in a fashion similar o
the one for plan capabilities.

5. Using this LOOM expression, find where it fits into the T-Box hieraschy of the domain knowledge.
Retrieve exact matches, immediate ancestors and descendants and retumn those that comespond ©©

Figure 2: The Plan Selection Algorithm

/

also taken into account by the classifier and do not result in a need
to make appropriate changes in different parts of the system.

2. The system can take advantage of incidental information about
goal instances: if an instance happens to have properties for
which a plan exists, then the plan will be returned by the plan
selection mechanism (This is due to the fact that the classifier
checks for every property on the instance in terms of named-
concept-expressions, as was discussed earlier).

3. Some types of goal reformulations are greatly facilitated by such
a framework. The hierarchical organization of plan libraries,
combined with its close coupling with the underlying domain
model, facilitates at least two types of goal reformulations:

12

(a) Consider forinstance, a goal such as (DIAGNOSE DECSERVER-313),
where DECSERVER-313 happens to be aninstance of decserver.
If there were no plans in the system to diagnose decservers,
most planners would return failure (A few recent systems,
such as SOAR [3] would attempt to use weak meithods to
solve the goal, but that might not be the best approach --
since their approach would be to try and attempt the di-
agnosis from first principles). For instance, in the case of
DECSERVER, the KB might specify the fact that it has two
disjoint sub-types: DECSERVER-200 and DECSERVER-500. The
system can then check to see whether it possesses plans that
can diagnose these two types of decservers. If it can, then
an attempt can be made to diagnose the given instance, by
executing both the plans and trying to combine their results.
This type of goal reformulation, based on knowledge about a
concept, available in the domain model, and a hierarchical
classification of plans based on type, is greatly facilitated by
a framework that combines the two.

(b) Another possibility of goal failure arises when the system is
unable to find an appropriate plan, inspite of its existence,
because of a difference in the terms used in the goal and the
plan. For instance, the goal could be of the form: (DIAGNOSE
SOURCE-COMPUTER-411), where the goal instance is of type
SOURCE-COMPUTER. There may be no plans in the knowledge
base to diagnose SOURCE-COMPUTERs; this may be perhaps
due to the fact that any computer, capable of supplying
particular software versions to a decserver can be its SOURCE-
COMPUTER. Thus the plan to diagnose computers can actually
be applied to a source-computer, by taking into account its
connectivity and its software versions. Since information
such as this can be expressed in the form of :IMPLIES relations
in these systems, the classifier will automatically be able to
retrieve DIAGNOSE-COMPUTER as a potential candidate for
this instance.

13

5 Conclusions

Many systems use a planner as one of their problem solving com-
ponents. Most of these planners, however, are not well integrated
with the rest of the system. Plans are matched with goals by using
the plan :CAPABILITIES (without taking into account the constraints as
well), using different mechanisms such as table look-up, discrimination
networks, etc. Planners have traditionally had their own mechanisms
for plan storage and retrieval, independent of the rest of the system
components. Plans have typically had limited access to the knowledge
base, through accessor functions as part of their constraints. In this
paper, we have described one approach towards integrating the storage
and selection mechanisms of a planner with the underlying knowledge
framework, and using a subsumption classifier to retrieve plans by
transforming goals appropriately.

Anadvantage of this approach lies in its ability to facilitate goal
reformulations. Failure to find an exact match for a goal should result
in the system replanning the goal based on other plansin its knowledge
base rather than goal failure. One way to reformulate a goal efficiently
is by restructuring the goal in terms of plans that the system does
possess, using information in the knowledge base to help achieve its
task. A plan hierarchy such as ours is very useful in this regard,
because it takes into consideration features such as disjoint coverings
and inheritance relationships while classifying the plans. Finding
plans that are ‘close’ to the desired match is a simple matter in this
case.

Our approach is not without its some disadvantages however, chief
among which is the requirement of a KR system that does classification.
Since the classifier uses its knowledge about the relationships between
terms in the domain model for classification, it is necessary that plan
selection criteria be expressible in the KR language. In our system,
since type specificity was the desired criterion, there was no need for
additional specification. In cases of plan recognition for instance, a
mapping between the body of the plan (or rather the the structure
that is being used for recognition, such as for instance, the kernel, or
the justification structure), and an appropriate KR expression must
be derived. This is not difficult, however, and can lead to a better

14

representation of the plan structure -- one that is closely integrated
with the representation of the domain model -- in a single, uniform
fashion.

15

References

[1] David Chapman. Planning for Conjunctive Goals. Artificial Intelligence,
32:333-377, 1987.

[2] Richard E. Fikes and Nils J. Nilsson. STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving. In James Allen,
James Hendler, and Austin Tate, editors, Readings in Planning, pages
88 - 98. Morgan Kaufmann Publishers, Inc., San Mateo, CA., 1990.

[3] John E. Laird, Allen Newell, and Paul S. Rosenbloom. SOAR: An archi-
tecture for general Intelligence. Artificial Intelligence, 33:1—-64, 1987.

{4] Robert MacGregor. A Deductive Pattern Matcher. In Proceedings of the
1988 Conference on Artificial Intelligence, St Paul, Mn, August 1988.
American Association of Artificial Intelligence.

[5] Robert MacGregor. The evolving technology of classification-based knowl-
edge representation systems. In John Sowa, editor, Principles of Semantic
Networks: Explorations in the Representation of Knowledge. Morgan Kauf-
mann, San Mateo, California, 1991.

(6] Robert Neches, William Roy Swartout, and Johanna Doris Moore. En-
hanced maintenance and explanation of expert systems through explicit
models of their development. IEEE Transactions on Software Engineer-
ing, SE-11(11):1337--1351, November 1985.

[7] Earl D. Sacerdoti. A Str{ucture for Plans and Behaviour. Elsevier-North
Holland, 1977. -

(8) William R. Swartout and Stephen W. Smoliar. On making expert systems
more like experts. Expert Systems, 4(3):196 -- 207, August 1987.

16

